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12 Introduction to Rings  
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12.1 Motivation and Definition  
Definition Ring

A ring  os a set with two binary operations, addtion and multiplication, such that for all 
 in :

1. .
2. .
3. There is an additive identity . This is , there is an element  in  such that  

for all  in .
4. There is an element  in  such that .
5. .
6.  and .

A ring is an Abelian group under addition, also having an associative multiplication that is left 
and right distributive over addition.
A ring need not have an identity under multiplication (unity).  is a unit if  exists.

12.2 Examples of Rings  

.
Direct sum: .

12.3 Properties of Rings  
Theorem 12.1 Rules of Multiplication

Let ,  and  belong to a ring . Then

1. .

2. .

3. .

4. .

Futhermore, if  has a unity element , then

5. .

6. .

Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.

The ring need not have mutliplicative cancellation: .
The ring need not have a mutliplicative identity:  or .

12.4 Subrings  
Definition Subring

A subset  of a ring  is a subring of  if  is itself a ring with the operations of .

The subring  of , has a unity  and every nonzero element is a unit of , but 
none of these elements is a unit in .
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The intersection of any collection of subring of a ring  is a subring of .

Theorem 12.3 Subring Test

A nonempty subset  of a ring  is a subring if  is closed under subtraction and 
mutliplication. In symbols, ,

Subring lattice diagram

12.5 Exercises  
1. A ring is commutative if it has the property that  implies . (Both outer 

cancellation and inner cancellation imply commutativity.)

2. Let , , and  be elements of a commutative ring, and suppose that  is a unit. Prove that 
.

3. Let , then , and 
.

4. A ring that is cyclic under addition is commutative.

5. The center of a ring is a subring.

6. Let  denote the set of units of a commutative ring , then  is a group under the 
multiplication of .

7. Suppose that  and  belong to a commutative ring  with unity. If  is a unit of  and 
, show that  is a unit of . ( )

8. Nilpotent: .

1. Let  be a nilpotent, prove that  has a multiplicative inverse.
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2. The nilpotent elements of a commutative ring form a subring.
3.  has a nonzero nilpotent element if and only if  is divisible by the square of some 

prime. (Hint: )
9. Idempotent: .

1. .
2. .
3. .  (It's not true in .)
4. .
5. If  and  are idempotent, then  is idempotent.

10. Boolean ring:  for all  in .

1. .
2. Boolean ring is commutative: 

.
11. There is no integer  such that  for all  in  when  is divisible by the square 

of some prime.

12. Let  be a commutative ring with more than one element. Prove that if for every nonzero 
element  of  we have , then  has a unity and every nonzero element has an 
inverse.

12.6 Bibliography of I.N.Herstein  
 

13 Integral Domains  
13.1 Definition and Examples  
Definition Zero-Divisors

A zero-divisor is a nonzero element  of a commutative ring  such that there is a nonzero 
element  with .

Definition Integral Domain

An integral domain is a commutative ring with unity and no zero-divisors.

Integral domain: .
Not an integral domain: .

Theorem 13.1 Cancellation

Let , , and  belong to an integral domain. If  and , then .

13.2 Fields  
Definition Field

A field is a commutative ring with unity in which every nonzero element is a unit.

Every field is an integral domain.
A field is an algebraic system that is closed under addition, subtraction, multiplication and 
division (except by 0).

Theorem 13.2 ⭐ 
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Ring Unity Commutative Integral Domain Field Characteristic

Yes Yes No

Yes No No

Yes Yes Yes

Yes Yes No 0

None Yes No No 0

No No No 0

None No No No 0

Yes Yes No 0

Yes Yes Yes 3

Yes No No 5

A finite integral domain is a field.

Corollary  Is a Field

For every prime , , the ring of integers modulo  is a field.

Field: .
Not a field: .

Theorem Subfield Test

Let  be a field and let  be a subset of  with at least two elements. Then  is a subfield 
of  if and only if 

13.3 Characteristic of a Ring  
Definition Characteristic of a Ring

The characteristic of a ring  is the least positive integer  such that  for all  in . 
If no such integer exists, we say that  has characteristic . The characteristic of  is 
denoted by .

Review that the exponent of a group  is the positive integer  such that  for all  in .

.
 divides , and a finite ring must have a nonzero characteristic.

Theorem 13.3 Characteristic of a Ring with Unity

Let  be a ring with unity . If  has infinite order under addition, then the characteristic of 
 is . If  has order  under addition, then the characteristic of  is .

Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is  or prime.
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Ring Unity Commutative Integral Domain Field Characteristic

Yes Yes No 0

Yes Yes Yes 0

Yes No No 0

13.4 Exercises  
1. For a nonzero element  in , if , then  is a unit, else  is a zero-divisor.

2. Every nonzero element of a finite commutative ring with unity is either a zero-divisor or a 
unit.

Hint: Let , .

3. If  is an integer, then  is an integral domain, and  is 

a field.  is a field if and only if .

4. Let  be a ring with unity. If the product of any pair of nonzero elements of  is nonzero, 
then .

5.  is a subdomain of any integral domain  with unity , and 
 (a prime or ).

6. If a field  has order , then .

7. Show that a finite commutative ring with no zero-divisors and at least two elements has a 
unity.

8. Suppose  and  belong to a commutative ring and  is a zero-divisor, then  or  is a zero-
divisor.

9. If  is a commutative ring without zero-divisors, then

1. All the nonzero elements of  have the same additive order.
2. The characteristic of  is  or prime.

10. Any finite field has order .

11. Let  belong to a commutative ring  with prime characteristic , then

1. .
2. If  is a nilpotent of degree , then .
3.  is a subring of .

12. Let  be a finite field with  elements, prove that  for all nonzero  in .

13. Let  be a subring of a ring  and suppose that  is a unity in  and  is a unity in  and 
, then .

 

14 Ideals and Factor Rings  
14.1 Ideals  
Definition Ideal

A subring  of a ring  is called a (two-sided) ideal of  if , .
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In other words, .

If  is an ideal of a ring  and  belongs to , then  since .

If an ideal  of a ring  contains a unit, then .
The only ideals of a field  are  and  itself and viceversa.

The interesction of any set of ideals of a ring is an ideal.

The sum of ideals  is an ideal.

.
The product of ideals  is an 
ideal.

.
.

If  and  are ideals of a commutative ring  with unity and , then 
.

Proof: .

Theorem 14.1 Ideal Test

A nonempty subset  of a ring  is an ideal of  if

1. .
2. .

Let  be an element of a commutative ring , then the set  is an ideal of 
 called the principal ideal generated by .

All polynomials with constant term , , is the subring of .
If  is an idempotent, then  is the identity in the ideal .
If  belong to an integral domain, then  if and only if  where  is a 
unit.
The characteristic of  is the additive order of .

Let  be elements of a commutatvive ring , then 
 is called the ideal generated 

by .

All polynomials with even constant terms, , is the subring of .
Let  be the ring of all real-valued functions of a real variable. The subset  of all 
differentiable functions is a subring of  but not an ideal of .

14.2 Factor Rings  
Theorem 14.2 Existence of Factor Rings

Let  be a ring and let  be a subring of . The set of cosets  is a ring 
under the operations  and  if 
and only if  is an ideal of .

 is a commutative ring with unity if and only if  for all  and  in .
 is a commutative ring with unity if  is commutative.

e.g.

 is a cyclic group as well as a field of order .
 is not a field. .

.
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14.3 Prime Ideals and Maximal Ideals  
Definition Prime Ideal, Maximal Ideal

A prime ideal  of a commutative ring  is a proper ideal of  such that  and 
 imply  or .

A maximal ideal of a commutative ring  is a proper ideal  of  such that, whenever  is 
an ideal of  and , then  or .

 is prime if and only if  is prime. (  is also a prime ideal of )
 is a maximal ideal in  if and only if  is prime.
 is a maximal ideal in  if and only if  is prime.

The lattice of ideals of  shows that both  and  are maximal ideals.

From above we see that the intersection of prime ideals need not be a prime ideal.
The ideal  is maximal in . To prove this, assume  is an ideal of  that 
properly contains  and prove that .
The ideal  is not prime in , since it contains  but not .
If  is a finite commutative ring with unity, then every prime ideal of  is maximal.

Theorem 14.3  Is an Integral Domain If and Only If  is Prime

Let  be a commutative ring with unity and let  be an ideal of . Then  is an integral 
domain if and only if  is prime.

Proof .

Theorem 14.4  is a Field If and Only If  Is Maximal

Let  be a commutative ring with unity and let  be an ideal of . Then  is a field if 
and only  is maximal.

Maximal ideals are prime. ⭐ 

From Examples to Theorem 14.2, we know that  is maximal in  but not prime 
in .
The ideal  in  is prime but not maximal.

 is a field.

14.4 Exercises  
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1.  is a maximal ideal of  but  is not a maximal ideal of .  is maximal.

2. In a commutative ring, the set of zero-divisors is an ideal.

3. Every nontrivial prime ideal of a finite commutative ring with unity is a maximal ideal. ⭐ 

Proof: If  is prime in , then  is a finite integral domain. Since a finite integral domain 
is a field,  is also maximal.

4. Every nontrivial prime ideal in a PID is a maximal ideal. ⭐ 

5. Every factor ring of a PID is a PID. ⭐ 

Hint: Every factor ring of  has the form , where  is a subring of .

6. Let  be a subset of a commutative ring , then

1. The annihilator  is an ideal.
2. The nil radical of :  is an ideal.
3. The nil radical of :  is an ideal.
4.  has no nonzero nilpotent elements.
5. .

 

Confusion: 27

14.5 Bibliography of Richard Dedekind  

14.6 Bibliography of Emmy Noether  
 

15 Ring Homomorphisms  
15.1 Definition and Examples  
Definition Ring Homomorphism and Isomorphism

A ring homomorphism  from a ring  to a ring  is a mapping from  to  that preserves 
the two ring operations; that is, for all ,  in ,

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.

The natural homomorphism from  to : .

To determine homomorphisms from  to , let  and notice that 
.

Let  be a commutative ring of characteristic . Then the mapping  is a ring 
homomorphism from  to .

Theorem of Gersonides: The only case of positive integers when  is for 
.

In fact, it's the only solution in the natural numbers of  where .

15.2 Properties of Ring Homomorphisms  
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Theorem 15.1 Properties of Ring homomorphisms

Let  be a ring homomorphism from a ring  to a ring . Let  be a subring of  and let  
be an ideal of .

1. .
2.  is a subring of .
3. If  is an ideal and  is onto, then  is an ideal.
4.  is an ideal of .
5. If  is commutative, then  is commutative.
6. If  has a unity , , and  is onto, then  is the unity of  and units in  

map to units in .
7.  is an isomorphism if and only if  is onto and .
8. If  is an isomorphism from  to , then  is an isomorphism from  onto .

The pullback of an ideal is an ideal, the converse is not true.

Suppose that  and  are commutative rings with unities. Let  be a ring homomorphism 
from  onto  and let  be an ideal of .

If  is prime in , then  is prime in .
If  is maximal in , then  is maximal in .

The homomorphic image of a principal ideal ring is a principal ideal ring.

Theorem 15.2 Kernels are Ideals

Let  be a ring homomorphism from a ring  to a ring . Then 
 is an ideal of .

Theorem 15.3 First Isomorphism Theorem for Rings

Let  be a ring homomorphism from  to . Then the mapping 
 is an isomorphism. In symbols, 

.

Proof Fundamental Theorem of Ring Homorphism

Corollary 1 Second Isomorphism Theorem for Rings

If  is a subring of  and  is an ideal of , then .

Proof Let , then .

Corollary 2 Third Isomorphism Theorem for Rings

If  and  are ideals of  and , then .

Proof Let , then .

Theorem 15.4 Ideals are Kernels

Every ideal of a ring  is the kernel of a ring homomorphism of . In particular, an ideal  
is the kernel of the natural mapping .



, and because  is an integral domain but not a field, the ideal  is prime 
but nor maximal in .

Theorem 15.5 Homomorphism from  to a Ring with Unity

Let  be a ring with unity  . The mapping  is a ring homomorphism.

Corollary 1 A Ring with Unity Contains  or 

If  is a ring with unity and the characteristic of  is , then  contains a subring 
isomorphic to . If the characteristic of  is , then  contains a subring isomorphic to .

Corollary 2  Is a Homomorphic Image of 

For any positive integer , the mapping of  is a ring 
homomorphism.

Corollary 3 A Field Conatins  or 

If  is a field of characteristic , then  contains a subfield isomorphic to . If  is a field of 
characteristic , then  contains a subfield isomorphic to .

Since the intersection of all subfields of a field is itself a subfield, and every field has a smallest 
subfield, which is called the prime subfield of the field. The prime subfield is isomorphic to  or 

.

15.3 The Field of Quotients  
Theorem 15.6 Field of Quotients

Let  be an integral domain. Then there exists a field  (called the field of quotients of ) 
that contains a subring isomorphic to .

Proof Let , we define an equivalence relation on  by 
 if , denote the equivalence class that contains  by , and define 

addition and multiplication on  by

Then the mapping  is a ring isomorphism. 

When  is a field , the field of quotients of  is traditionally denoted by .
Let  be a prime, then  is an infinite 
field of characteristic .
The field of quotients of a field  is ring-isomorphic to .
The field of quotients of an integral domain  is the smallest field containing .

15.4 Exercises  
1. Examples

1. Let , then

 is a ring isomorphism.

2.  is a ring homomorphism if and only if .

3.  where .

af://n557
af://n573


4.  where  and  is an idempotent of .

5.  where  and  are 
nonzero real numbers.

6. Let , then

 is a ring homomorphism.

2. Both  and  take a zero-divisor to the 
unity.

3. If  is onto and , then .

4. Let  be a commutative ring of prime characteristic , then the Frobenius map  is a 
ring homomorphism from  to . If  is a field, then the mapping is an isomorphism.

 

16 Polynomial Rings  
16.1 Notation and Terminology  
Definition Ring of Polynomials over 

Let  be a commutative ring. The set of formal symbols

is called the ring of polynomials over  in the indeterminate . Two elements 
 and  of  

are considered equal if and only if  for all nonnegative integers . (Define  
when  and  when .)

Definition Addition and Multiplication in 

For , the degree is , denoted by 
, and the leading coefficient is . If  is the unity, then  is a monic 

polynomial.
In an integral domain, , but it is possible that 

.

Theorem 16.1  an Integral Domain Implies  an Integral Domain

If  is an integral domain, then  is an integral domain.

Since  is a ring, we only need to prove that  is commutative with a unity and has no 
zero-divisors.

16.2 The Division Algorithm and Consequences  
Theorem 16.2 Division Algorithm for 

Let  be a field and let  with . Then there exist unique 
polynomials  and  in  such that  where either 

 or .

Long division process, which is also true for integral domains.
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If , we write  and call  a factor of .
An element  is a zero (or a root) of  if , and we say that  is a zero of 
multiplicity  if  but .

Corollary 1 Remainder Theorem

Let  be a field, , and . Then  is the remainder in the division of  
by .

Corollary 2 Factor Theorem

Let  be a field, , and . Then  is a zero of  if and only if  is a 
factor of .

It's also true over any commutative ring with unity.

Theorem 16.3 Polynomials of Degree  Have at Most  Zeros

A polynomial of degree  over a field has at most  zeros, counting multiplicity.

It's also true over integral domains.
In the ring ,  has  as zeros. (  is a field.)

A primitive th root of unity: .

Definition Principal Ideal Domain (PID)

A principal ideal domain is an integral domain  in which every ideal has the form 
 for some  in .

Theorem 16.4  Is a PID

Let  be a field, then  is a principal ideal domain.

If a field  has an ideal , then  or .

Proof If , then , so .

 is an iconic integral domain of polynomials, but it's not PID, because the ideal of all 
elements in  with even constant term is not generated by a single element.

Theorem 16.5 Criterion for 

Let  be a field,  a nonzero ideal in , and  an element of . Then  if 
and only if  is a nonzero polynomial of minimum degree in .

, then  and is of minimum degree. Thus, 
 and .

16.3 Exercises  
Wilson's Theorem

For every integer ,  if and only if  is prime.

.

1. Every element in the ring of polynomial functions from  to  can be written in the form 
.

2. . ⭐ 
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1. If  is a ring homomorphism, then 
 is also a ring 

homomorphism.
2.  is called the evaluation homomorphism.

3.  is cyclic.

Proof: For , otherwise  has a subgroup isomorphic to  where  is a prime. 
But then  in  has  zeros.

4. In , .

5. Relation between a ring and a polynomial ring ⭐ 

1.  is an ideal of a ring  is an ideal of .
2.  is a maximal ideal of a ring  is a maximal ideal of .
3.  is a prime ideal of a ring  is a prime ideal of .

6. If there is a ring homomorphism from  onto , then .

7. Suppose  is a polynomial with odd coefficients and even degree, then  has no 
rational zeros. 🌙

Hint: Analog of the proof that  is irrational.

 

Confusion: 8

 

17 Factorization of Polynomials  
17.1 Reducibility Tests  
Definition Irreducible Polynomial

Let  be an integral domain. A polynomial  from  that is neither the zero 
polynomial nor a unit in is said to be irreducible over  if, whenever  is expressed 
as a product  with  and  from , then  or  is a unit in 

. A nonzero, nonunit element of  that is not irreducible over  is called reducible 
over .

 Theorem 17.1 Reducibility Test for Degrees  and 

Let  be a field. If  and  or , then  is reducible over  if and 
only if  has a zero in .

In , , , and in 
, .

Definition Content of a Polynomial, Primitive Polynomial

The content of a nonzero polynomial  where the 's are 
integers, is the greatest common divisor of . A primitive polynomial is an 
element of  with content .

Gauss's Lemma

The product of two primitive polynomials is primitive.

Theorem 17.2 Reducibility over  Implies Reducibility over 
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Let , if  is reducible over , then it is reducible over .

If  is irreducible over , then it's irreducible over .
 is irreducible over  but reducible over  since  is not a unit of .

17.2 Irreducibility Tests  
Theorem 17.3 Mod  Irreducibility Test

Let  be a prime and suppose that  with . Let  be the 
polynomial in  obtained from  by reducing all the coefficients of  modulo . If 

 is irreducible over  and , then  is irreducible over .

To prove it: if  is reducible over , then it's reducible over .

Theorem 17.4 Eisenstein's Criterion

Let . If there is a prime  such that 
 and , then  is irreducible over .

Corollary Irreducibility of th Cyclotomic Polynomial

For any prime , the th cyclotomic polynomial

is irreducible over .

Proof  is irreducible over .

Theorem 17.5  Is Maximal If and Only If  Is Irreducible

Let  be a field and let . Then  is a maximal ideal in  if and only if 
 is irreducible over .

Corollary 1  Is a Field

Let  be a field and  be an irrducible polynomial over , then  is a field.

This follows directly from Theorem 14.4 and 17.5.

Corollary 2  Implies  or 

Let  be a field and let . If  is irreducible over  and 
, then  or .

To construct a field with  elements, find a polynomial of degree  with no zero in , say 
, then  satisfies.

17.3 Unique Factorization in  
The only units in  are .
The irreducible polynomials of degree  over  are  where  is a prime.
Every nonconstant irreducible polynomial from  is primitive.

Theorem 17.6 Unique Factorization in 
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Every polynomial in  that is not the zero polynomial or a unit in  can be written in 
the form

uniquely where the 's are irreducible polynomials of degree  and the 's are 
irreducible polynomials of positive degree.

17.4 Weird Dice: An Application of Unique
Factorization

 

1, 2, 2, 3, 3, 4

1, 3, 4, 5, 6, 8

17.5 Exercises  
Rational Root Theorem

Let , if  where  and  
are relatively prime integers, then .

Proof i.e. . This shows that  and . 

1. In , , if  has at least one 
solution, then the quadratic formula  holds.

2. The number of reducible polynomials of degree  over  is .

 

Better Solution: 8, 14.e, 

17.6 Bibliography of Serge Lang  
 

18 Divisibility in Integral Domains  
18.1 Irreducibles, Primes  
Definition Associates, Irreducibles, Primes

Elements  and  of an integral domain  are called associates if , where  is a unit 
of .

A nonzero element  of an integral domain  is called an irreducible if  is not a unit and 
whenever , then  or  is a unit.

A nonzero element  of an integral domain  is called a prime if  is not a unit and  
implies  or .

associates 

equivalence relation:  if .
.

irreducible 
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The product of an irreducible and a unit is an irreducible.
prime 

 if a prime if and only if  is a prime ideal.
norm 

, where  and not divisible by the square of a 

prime. Define a function called the norm: , 
then

1.  if and only if .

2. .

3.  is a unit if and only if .

4. If  is prime, then  is irreducible.

The converse is not true.

If , then the only units of  is .

e.g. 

In ,  is an irreducible, but not a prime. (Consider 
, but .)

To show that  is irreducible, notice that every solution of  would 
also hold in , just try to find a counter-example.

Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.

Proof If , then  or . Let , then , thus  is a unit. 

Theorem 18.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, en element is an irreducible if and only if it is prime.

Proof Suppose , consider the ideal . Let , then  is 
a unit or  is a unit.

1. If  is a unit, then  and , and since , we have 
.

2. If  is a unit, then , and we have , thus . 

This theorem holds in a UFD.
 is not a principal ideal domain since we have the ideal .

18.2 Historical Discussion of Fermat's Last Theorem  

18.3 Unique Factorization Domains  
Definition Unique Factorization Domain (UFD)

An integral domain  is a unique factorization domain if

1. every nonzero element of  that is not a unit can be written as a product of 
irreducibles of ; and
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Properties

Euclidean Domain . .

Units If and ony if . If and only if .

Division Algorithm . .

Principal Ideal
Domain

 where  is
minimum.

 where  is
minimum.

Prime No nontrivial factors. No nontrivial factors.

2. the factorization into irreducibles is unique up to associates and the order in which the 
factors appear.

 is not a UFD since .

Lemma Ascending Chain Condition for a PID

In a principal ideal domain, any strictly increasing chian of ideals  must be 
finite in length.

Proof Let , say , then , so that  is the last 
member of the chain. 

Theorem 18.3 PID Implies UFD

Every principal ideal domain is a unique factorization domain.

An integral domain with the property that there is no infinite, strictly increasing chain of 
ideals in , is called a Noetherian domain.

 is a Noetherian domain and also a UFD, but not a PID.

Corollary  Is a UFD

Let  be a field, then  is a unique factorization domain.

We can prove the Eisentein's Criterion by this corollary elegantly.

18.4 Euclidean Domains  
Definition Euclidean Domain (ED)

An integral domain  is called a Euclidean domain if there is a function  (called the 
measure) from the nonzero elements of  to the nonnegative integers such that

1.  for all nonzero  in ; and
2. if , then there exist elements  and  in  such that , where 

 or .

 is a unit . 
.

The subdomain of an ED may not be an ED. 
Similarities Between  and .
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Properties

Unique
Factorization
Domain

Every element is a unique
product of primes.

Every element is a unique product
of irreducibles.

 is a Euclidean domain with .

1.  follows directly from .

2. Say , let  be the integer nearest , and  be the integer 
nearest , then

,

,

.

 is finite.
 is Euclidean domain when , and there are no other negative values that 

satisfy.

Theorem 18.4 ED Implies PID

Every Euclidean domain is a principal ideal domain.

Proof The zero ideal is . For a nonzero ideal , let  be such that  is a minimum, then 
. For, , but , so , thus  and . 

There are PID that are not ED.

Corollary ED Implies UFD

Every Euclidean domain is a unique factorization domain.

Theorem 18.5  a UFD Implies  a UFD

If  is a unique factorization domain, then  is a unique factorization domain.

 is a PID, but  is not a PID.

 is an integral domain but not a UFD,

since .

18.5 Exercises  
1. Suppose  and  belong to an integral domain and , then

 is a proper subset of   is not a unit.

2. Every proper ideal of a PID is contained in its maximal ideal.

3. In  where  need not to be a prime,

1.  is prime in .
2.  is irreducible in  and .
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4. Descentding chain condition

An integral domain with the property that every strictly decreasing chain of ideals 
 must be finite in length is a field.

5. An ideal  of a commutative ring  with unity is said to be finitely generated if there exist 
elemts  of  such that .

An integral domain  satisfies the ascending chain condition.  Every  ideal of  is 
finitely generated.

6. For every field , there are infinitely many irreducibles in .

7. Let  be a non-zero ideal in a PID , then  has a fiinte number of ideals.

 

Question:

30, .

18.6 Bibliography of Sophie Germain  

18.7 Bibliography of Andrew Wiles  

18.8 Bibliography of Pierre de Fermat  
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