Part 2: Rings

12 Introduction to Rings

- 12.1 Motivation and Definition
- 12.2 Examples of Rings
- 12.3 Properties of Rings
- 12.4 Subrings
- 12.5 Exercises
- 12.6 Bibliography of I.N.Herstein

13 Integral Domains

- 13.1 Definition and Examples
- 13.2 Fields
- 13.3 Characteristic of a Ring
- 13.4 Exercises

14 Ideals and Factor Rings

- 14.1 Ideals
- 14.2 Factor Rings
- 14.3 Prime Ideals and Maximal Ideals
- 14.4 Exercises
- 14.5 Bibliography of Richard Dedekind
- 14.6 Bibliography of Emmy Noether

15 Ring Homomorphisms

- 15.1 Definition and Examples
- 15.2 Properties of Ring Homomorphisms
- 15.3 The Field of Quotients
- 15.4 Exercises

16 Polynomial Rings

- 16.1 Notation and Terminology
- 16.2 The Division Algorithm and Consequences
- 16.3 Exercises

17 Factorization of Polynomials

- 17.1 Reducibility Tests
- 17.2 Irreducibility Tests
- 17.3 Unique Factorization in $\mathbb{Z}[x]$
- 17.4 Weird Dice: An Application of Unique Factorization
- 17.5 Exercises
- 17.6 Bibliography of Serge Lang
- 18 Divisibility in Integral Domains
 - 18.1 Irreducibles, Primes
 - 18.2 Historical Discussion of Fermat's Last Theorem
 - 18.3 Unique Factorization Domains
 - 18.4 Euclidean Domains
 - 18.5 Exercises
 - 18.6 Bibliography of Sophie Germain
 - 18.7 Bibliography of Andrew Wiles
 - 18.8 Bibliography of Pierre de Fermat

12 Introduction to Rings

12.1 Motivation and Definition

Definition Ring

A ring R os a set with two binary operations, addition and multiplication, such that for all a, b, c in R:

- 1. a + b = b + a.
- 2. (a + b) + c = a + (b + c).
- 3. There is an additive identity 0. This is , there is an element 0 in R such that a + 0 = a for all a in R.
- 4. There is an element -a in R such that a + (-a) = 0.
- 5. a(bc) = (ab)c.
- 6. a(b+c) = ab + ac and (b+c)a = ba + ca.
- A ring is an Abelian group under addition, also having an *associative* multiplication that is left and right *distributive* over addition.
- A ring need not have an identity under multiplication (**unity**). a is a **unit** if a^{-1} exists.

12.2 Examples of Rings

- $\mathbb{Z}, \mathbb{Z}_n, n\mathbb{Z}, \mathbb{Z}[x], M_n(\mathbb{Z})$
- (f+g)(a) = f(a) + g(a), (fg) = f(a)g(a).
- Direct sum: $R_1 \oplus R_2 \oplus \cdots \oplus R_n$.

12.3 Properties of Rings

Theorem 12.1 Rules of Multiplication

```
Let a, b and c belong to a ring R. Then

1. a0 = 0a = 0.

2. a(-b) = (-a)b = -(ab).

3. (-a)(-b) = ab.

4. a(b - c) = ab - ac, (b - c)a = ba - ca.

Futhermore, if R has a unity element 1, then

5. (-1)a = -a.

6. (-1)(-1) = 1.
```

Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.

- The ring need not have mutliplicative cancellation: $a \neq 0, \ ab = ac \quad \Rightarrow \quad b = c.$
- The ring need not have a mutliplicative identity: $a^2 = a \quad \Rightarrow \quad a = 0 \text{ or } 1.$

12.4 Subrings

Definition Subring

A subset S of a ring R is a subring of R if S is itself a ring with the operations of R.

• The subring $2\mathbb{Z}_{10}$ of \mathbb{Z}_{10} , has a unity 6 and every nonzero element is a unit of $2\mathbb{Z}_{10}$, but none of these elements is a unit in \mathbb{Z}_{10} .

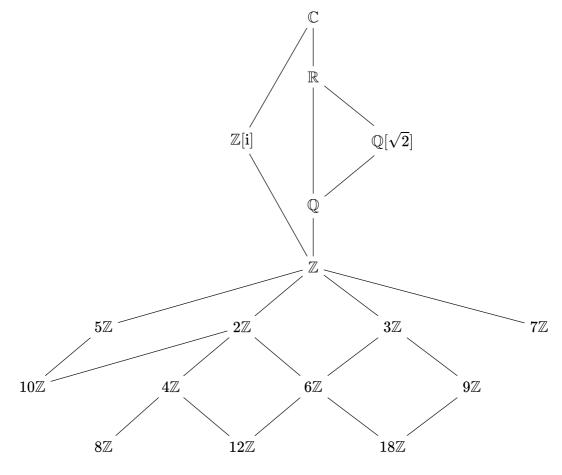
• The intersection of any collection of subring of a ring *R* is a subring of *R*.

Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under subtraction and mutliplication. In symbols, $orall a, b \in S$,

 $a-b, ab \in S.$

Subring lattice diagram



12.5 Exercises

- 1. A ring is commutative if it has the property that $ab = ca \ (a \neq 0)$ implies b = c. (Both outer cancellation and inner cancellation imply commutativity.)
- 2. Let a, b, and c be elements of a commutative ring, and suppose that a is a unit. Prove that $b \mid c \Leftrightarrow ab \mid c$.
- 3. Let $a,b\in R,\,m,n\in\mathbb{Z}$, then $m\cdot(ab)=(m\cdot a)b=a(m\cdot b)$, and $(m\cdot a)(n\cdot b)=(mn)\cdot(ab).$
- 4. A ring that is cyclic under addition is commutative.
- 5. The center of a ring is a subring.
- 6. Let U(R) denote the set of units of a commutative ring R, then U(R) is a group under the multiplication of R.
- 7. Suppose that a and b belong to a commutative ring R with unity. If a is a unit of R and $b^2=0$, show that a+b is a unit of R. ($(a+b)(a^{-1}-a^{-2}b)=1$)

8. Nilpotent:
$$x^n=0$$
 $(n>1).$

1. Let a be a nilpotent, prove that 1 - a has a multiplicative inverse.

- 2. The nilpotent elements of a commutative ring form a subring.
- 3. \mathbb{Z}_n has a nonzero nilpotent element if and only if n is divisible by the square of some prime. (Hint: $n = p^2 m, \ (pm)^2 = 0$)
- 9. Idempotent: $x^{n} = x (n > 1)$.
 - 1. $x = x^{1+m(n-1)}$. 2. $\exists m \in \mathbb{N}^+, x^m = 0 \Rightarrow x = 0$. 3. $ab = 0 \Rightarrow ba = 0$. (It's not true in $M_n(\mathbb{R})$.) 4. $2x = 2^n x^n = 2^n x \Rightarrow (2^n - 2)x = 0$. 5. If a and b are idempetent, then $a^{n_1} + b b^{n_2} + b a^{n_3}$.
 - 5. If a and b are idempotent, then $a^{n_1}+k_1b^{n_2}+k_2a^{n_3}b^{n_4}$ is idempotent.
- 10. Boolean ring: $x^2 = x$ for all x in R.
 - $1.-x=(-x)^2=x \quad \Rightarrow \quad 2x=0.$
 - 2. Boolean ring is commutative:
 - $a+b=(a+b)^2=a+ab+ba+b \quad \Rightarrow \quad ab=-ba=ba.$
- 11. There is no integer n > 1 such that $a^n = a$ for all a in \mathbb{Z}_m when m is divisible by the square of some prime.
- 12. Let R be a commutative ring with more than one element. Prove that if for every nonzero element a of R we have aR = R, then R has a unity and every nonzero element has an inverse.

12.6 Bibliography of I.N.Herstein

13 Integral Domains

13.1 Definition and Examples

Definition Zero-Divisors

```
A zero-divisor is a nonzero element a of a commutative ring R such that there is a nonzero element b \in R with ab=0.
```

Definition Integral Domain

An integral domain is a commutative ring with unity and no zero-divisors.

- Integral domain: $\mathbb{Z}, \mathbb{Z}[x], \mathbb{Z}[\sqrt{2}], \mathbb{Z}_p$.
- Not an integral domain: $M_2(\mathbb{Z}), \, \mathbb{Z} \oplus \mathbb{Z}.$

Theorem 13.1 Cancellation

Let a, b, and c belong to an integral domain. If $a \neq 0$ and ab = ac, then b = c.

13.2 Fields

Definition Field

A field is a commutative ring with unity in which every nonzero element is a unit.

- Every field is an integral domain.
- A field is an algebraic system that is closed under addition, subtraction, multiplication and division (except by 0).

Theorem 13.2 🛧

A finite integral domain is a field.

Corollary \mathbb{Z}_p Is a Field

For every prime p, \mathbb{Z}_p , the ring of integers modulo p is a field.

- Field: $\mathbb{Z}_3[i], \mathbb{Q}[\sqrt{2}].$
- Not a field: $\mathbb{Z}_5[i]$.

Theorem Subfield Test

Let F be a field and let K be a subset of F with at least two elements. Then K is a subfield of F if and only if $orall a,b\,(b
eq 0)\in K$

 $a-b, ab^{-1} \in K.$

13.3 Characteristic of a Ring

Definition Characteristic of a Ring

The **characteristic** of a ring R is the least positive integer n such that nx = 0 for all x in R. If no such integer exists, we say that R has characteristic 0. The characteristic of R is denoted by char R.

Review that the exponent of a group G is the positive integer n such that $x^n = e$ for all x in G.

- $\operatorname{char} \mathbb{Z} = 0$, $\operatorname{char} \mathbb{Z}_n = n$, $\operatorname{char} \mathbb{Z}_2[x] = 2$.
- $\operatorname{char} R$ divides |R|, and a finite ring must have a nonzero characteristic.

Theorem 13.3 Characteristic of a Ring with Unity

Let R be a ring with unity 1. If 1 has infinite order under addition, then the characteristic of R is 0. If 1 has order n under addition, then the characteristic of R is n.

Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

Ring	Unity	Commutative	Integral Domain	Field	Characteristic
\mathbb{Z}	1	Yes	Yes	No	0
\mathbb{Z}_n	1	Yes	No	No	n
\mathbb{Z}_p	1	Yes	Yes	Yes	p
$\mathbb{Z}[x]$	f(x) = 1	Yes	Yes	No	0
$n\mathbb{Z}$	None	Yes	No	No	0
$M_n(\mathbb{Z})$	E_n	No	No	No	0
$M_2(2\mathbb{Z})$	None	No	No	No	0
$\mathbb{Z}[\mathrm{i}]$	1	Yes	Yes	No	0
$\mathbb{Z}_3[\mathrm{i}]$	1	Yes	Yes	Yes	3
$\mathbb{Z}_5[\mathrm{i}]$	1	Yes	No	No	5

Ring	Unity	Commutative	Integral Domain	Field	Characteristic
$\mathbb{Z}[\sqrt{2}]$	1	Yes	Yes	No	0
$\mathbb{Q}[\sqrt{2}]$	1	Yes	Yes	Yes	0
$\mathbb{Z}\oplus\mathbb{Z}$	(1, 1)	Yes	No	No	0

13.4 Exercises

- 1. For a nonzero element a in \mathbb{Z}_{n} , if gcd(a, n) = 1, then a is a unit, else a is a zero-divisor.
- 2. Every nonzero element of a finite commutative ring with unity is either a zero-divisor or a unit.

Hint: Let $s \in R$, $S = \{sr \mid r \in R\}$.

- 3. If d is an integer, then $\mathbb{Z}[\sqrt{d}] = \left\{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\right\}$ is an integral domain, and $\mathbb{Q}[\sqrt{d}]$ is a field. $\mathbb{Z}_p[\sqrt{k}] = \left\{a + b\sqrt{k} \mid a, b \in \mathbb{Z}_p\right\}$ is a field if and only if $a^2 \neq b^2 k$.
- 4. Let R be a ring with unity. If the product of any pair of nonzero elements of R is nonzero, then $ab = 1 \Leftrightarrow ba = 1$.
- 5. $P = \{n \cdot 1 \mid n \in \mathbb{Z}\}$ is a **subdomain** of any integral domain D with unity 1, and $|P| = \operatorname{char} D$ (a prime or ∞).
- 6. If a field F has order p^n , then $\operatorname{char} F = p$.
- 7. Show that a finite commutative ring with no zero-divisors and at least two elements has a unity.
- 8. Suppose a and b belong to a commutative ring and ab is a zero-divisor, then a or b is a zero-divisor.
- 9. If R is a commutative ring without zero-divisors, then
 - 1. All the nonzero elements of R have the same additive order.
 - 2. The characteristic of R is 0 or prime.
- 10. Any finite field has order p^n .
- 11. Let x_1, x_2, \cdots, x_n belong to a commutative ring R with prime characteristic p, then
 - 1. $(x_1 + x_2 + \dots + x_n)^{p^m} = x_1^{p^m} + x_2^{p^m} + \dots + x_1^{p^m}$.
 - 2. If $a \in R$ is a nilpotent of degree k, then $(1 + a)^{p^k} = 1$.
 - 3. $K = \{x \in R \mid x^p = x\}$ is a subring of R.
- 12. Let $\mathbb F$ be a finite field with n elements, prove that $x^{n-1} = 1$ for all nonzero x in $\mathbb F$.
- 13. Let S be a subring of a ring R and suppose that u_S is a unity in S and u_R is a unity in R and $u_S \neq u_R$, then $u_S u_R = u_S u_S \Rightarrow u_S(u_R u_S) = 0$.

14 Ideals and Factor Rings

14.1 Ideals

Definition Ideal

A subring A of a ring R is called a (two-sided) **ideal** of R if $\forall r \in R, \forall a \in A$, $ar, ra \in A$.

- In other words, $orall r \in R, \, rA \subseteq A, \, Ar \subseteq A.$
- If A is an ideal of a ring R and 1 belongs to A, then A = R since $r \cdot 1 = r \in A$.
 - If an ideal I of a ring R contains a unit, then I = R.
 - $\circ~$ The only ideals of a field $\mathbb F$ are $\{0\}$ and $\mathbb F$ itself and viceversa.
- The interesction of any set of ideals of a ring is an ideal.
- The sum of ideals $A + B = \{a + b \mid a \in A, b \in B\}$ is an ideal.

$$\circ \langle m,n
angle = \langle m
angle + \langle n
angle = \langle ext{gcd}(m,n)
angle.$$

- The product of ideals $AB = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n \mid a_i \in A, b_i \in B, n \in \mathbb{N}^+\}$ is an ideal.
 - $\langle m \rangle \langle n \rangle = \langle mn \rangle.$
 - $\circ \ AB \subseteq A \cap B.$
- If A and B are ideals of a commutative ring R with unity and A + B = R, then $A \cap B = AB$.

 $\text{Proof:}\ a+b=1,\ a_1=b_1=a_1a+a_1b=ab_1+a_1b\in AB\Rightarrow A\cap B\subseteq AB.$

Theorem 14.1 Ideal Test

A nonempty subset A of a ring R is an ideal of R if

- Let a be an element of a commutative ring R, then the set $\langle a \rangle = \{ra \mid r \in R\}$ is an ideal of R called the **principal ideal** generated by a.
 - All polynomials with constant term 0, $A = \langle x \rangle$, is the subring of $\mathbb{R}[x]$.
 - If a is an idempotent, then a is the identity in the ideal $\langle a \rangle$.
 - If a,b belong to an integral domain, then $\langle a
 angle = \langle b
 angle$ if and only if a = bu where u is a unit.
 - The characteristic of $\langle a
 angle$ is the additive order of a.
- Let a_1, a_2, \cdots, a_n be elements of a commutatvive ring R, then

 $I=\langle a_1,a_2,\cdots,a_n
angle=\{r_1a_1+r_2a_2+\cdots+r_na_n\mid r_i\in R\}$ is called the ideal generated by $a_1,a_2,\cdots,a_n.$

- All polynomials with even constant terms, $I=\langle x,2
 angle$, is the subring of $\mathbb{Z}[x].$
- Let R be the ring of all real-valued functions of a real variable. The subset S of all differentiable functions is a subring of R but not an ideal of R.

14.2 Factor Rings

Theorem 14.2 Existence of Factor Rings

Let R be a ring and let A be a subring of R. The set of cosets $\{r + A \mid r \in R\}$ is a ring under the operations (s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A if and only if A is an ideal of R.

- R/I is a commutative ring with unity if and only if $rs sr \in I$ for all r and s in R.
- R/I is a commutative ring with unity if R is commutative.

e.g.

- $R=\mathbb{Z}_3[x]/\left\langle x^2+1
 ight
 angle$ is a cyclic group as well as a field of order 9.
- $R = \mathbb{Z}_5[x]/\left\langle x^2 + 1 \right
 angle$ is not a field. $|R| = 25, \ |x+1| = 4, \ (x+2)(x+3) = 0.$
- $|\mathbb{Z}[i]/\langle a+bi
 angle|=(a^2+b^2)b.$

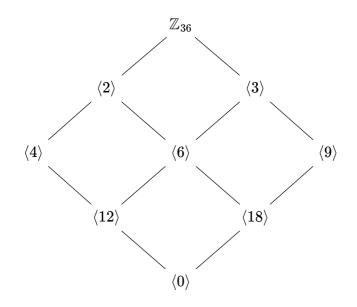
14.3 Prime Ideals and Maximal Ideals

Definition Prime Ideal, Maximal Ideal

A **prime ideal** A of a commutative ring R is a proper ideal of R such that $a, b \in R$ and $ab \in A$ imply $a \in A$ or $b \in A$.

A **maximal ideal** of a commutative ring R is a proper ideal A of R such that, whenever B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

- $n\mathbb{Z}$ is prime if and only if n is prime. ($\{0\}$ is also a prime ideal of \mathbb{Z})
- $\langle s
 angle$ is a maximal ideal in \mathbb{Z}_{st} if and only if s is prime.
- $\langle n
 angle$ is a maximal ideal in $\mathbb Z$ if and only if n is prime.
- The lattice of ideals of \mathbb{Z}_{36} shows that both $\langle 2 \rangle$ and $\langle 3 \rangle$ are maximal ideals.



- From above we see that the intersection of prime ideals need not be a prime ideal.
- The ideal $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$. To prove this, assume A is an ideal of $\mathbb{R}[x]$ that properly contains $\langle x^2 + 1 \rangle$ and prove that $A = \mathbb{R}[x]$.
- The ideal $\langle x^2+1
 angle$ is not prime in $\mathbb{Z}_2[x]$, since it contains $(x+1)^2=x^2+1$ but not x+1.
- If *R* is a finite commutative ring with unity, then every prime ideal of *R* is maximal.

Theorem 14.3 R/A Is an Integral Domain If and Only If A is Prime

Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is an integral domain if and only if A is prime.

 $\textbf{Proof} \ (a+A)(b+A) = ab + A = A \quad \Leftrightarrow \quad a+A = A \text{ or } b+A = A.$

Theorem 14.4 R/A is a Field If and Only If A Is Maximal

Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is a field if and only A is maximal.

- Maximal ideals are prime. ☆
- From Examples to Theorem 14.2, we know that $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{Z}_3[x]$ but not prime in $\mathbb{Z}_5[x]$.
- The ideal $\langle x
 angle$ in $\mathbb{Z}[x]$ is prime but not maximal.
- $\mathbb{R}[x]/\left\langle x^2+1
 ight
 angle$ is a field.

14.4 Exercises

- 1. $\langle 2 \rangle$ is a maximal ideal of \mathbb{Z} but $\langle 2 \rangle [x]$ is not a maximal ideal of $\mathbb{Z}[x]$. $\langle 2, x \rangle$ is maximal.
- 2. In a commutative ring, the set of zero-divisors is an ideal.
- 3. Every nontrivial prime ideal of a finite commutative ring with unity is a maximal ideal. \bigstar

Proof: If P is prime in R, then R/P is a finite integral domain. Since a finite integral domain is a field, P is also maximal.

- 4. Every nontrivial prime ideal in a PID is a maximal ideal. \bigstar
- 5. Every factor ring of a PID is a PID. \bigstar

Hint: Every factor ring of R/I has the form A/I, where A is a subring of R.

6. Let A be a subset of a commutative ring R, then

- 1. The **annihilator** $\operatorname{Ann} A = \{r \in R \mid ra = 0 ext{ for all } a ext{ in } A\}$ is an ideal.
- 2. The **nil radical** of A: $N(A) = \{r \in R \mid r^n \in A, n \in \mathbb{N}^+\}$ is an ideal.
- 3. The nil radical of $R{:}\,N(\langle 0
 angle)$ is an ideal.
- 4. $R/N(\langle 0
 angle)$ has no nonzero nilpotent elements.
- 5. N(N(A)) = N(A).

Confusion: 27

14.5 Bibliography of Richard Dedekind

14.6 Bibliography of Emmy Noether

15 Ring Homomorphisms

15.1 Definition and Examples

Definition Ring Homomorphism and Isomorphism

A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that preserves the two ring operations; that is, for all a, b in R,

$$egin{array}{ll} \phi(a+b)=\phi(a)+\phi(b)\ \phi(ab)=\phi(a)\phi(b). \end{array}$$

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.

- The natural homomorphism from \mathbb{Z} to \mathbb{Z}_n : $\phi: k \mapsto k \mod n$.
- To determine homomorphisms from \mathbb{Z}_m to \mathbb{Z}_n , let $\phi(1) = a$ and notice that $a \cdot a = \phi(1 \cdot 1) = a$.
- Let R be a commutative ring of characteristic 2. Then the mapping $a o a^2$ is a ring homomorphism from R to R.
- Theorem of Gersonides: The only case of positive integers when $2^m = 3^n + 1$ is for (m, n) = (3, 2).

In fact, it's the only solution in the natural numbers of $x^m - y^n = 1$ where m, n, x, y > 1.

15.2 Properties of Ring Homomorphisms

Theorem 15.1 Properties of Ring homomorphisms

Let ϕ be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let B be an ideal of S.

- 1. $orall r\in R, n\in \mathbb{N}^+, \, \phi(nr)=n\phi(r), \, \phi(r^n)=\phi(r)^n.$
- 2. $\phi(A) = \{\phi(a) \mid a \in A\}$ is a subring of S.
- 3. If A is an ideal and ϕ is onto, then $\phi(A)$ is an ideal.
- 4. $\phi^{-1}(B) = \{r \in R \mid \phi(r) \in B\}$ is an ideal of R.
- 5. If R is commutative, then $\phi(R)$ is commutative.
- 6. If R has a unity 1, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S and units in R map to units in S.
- 7. ϕ is an isomorphism if and only if ϕ is onto and Ker $\phi = \{r \in R \mid \phi(r) = 0\} = \{0\}.$
- 8. If ϕ is an isomorphism from R to S, then ϕ^{-1} is an isomorphism from S onto R.
- The pullback of an ideal is an ideal, the converse is not true.
- Suppose that R and S are commutative rings with unities. Let ϕ be a ring homomorphism from R onto S and let B be an ideal of S.
 - If *B* is prime in *S*, then $\phi^{-1}(B)$ is prime in *R*.
 - If B is maximal in S, then $\phi^{-1}(B)$ is maximal in R.
- The homomorphic image of a principal ideal ring is a principal ideal ring.

Theorem 15.2 Kernels are Ideals

Let ϕ be a ring homomorphism from a ring R to a ring S. Then $\operatorname{Ker} \phi = \{r \in R \mid \phi(r) = 0\}$ is an ideal of R.

Theorem 15.3 First Isomorphism Theorem for Rings

Let ϕ be a ring homomorphism from R to S. Then the mapping $\psi: R/\operatorname{Ker} \phi o \phi(R), \ r + \operatorname{Ker} \phi \mapsto \phi(r)$ is an isomorphism. In symbols, $R/\operatorname{Ker} \phi \approx \phi(R)$.

Proof Fundamental Theorem of Ring Homorphism

$$egin{aligned} \psi((x+\operatorname{Ker}\phi)+(y+\operatorname{Ker}\phi))&=\psi(x+y+\operatorname{Ker}\phi)\ &=\phi(x+y)=\phi(x)+\phi(y)\ &=\psi(x+\operatorname{Ker}\phi)+\psi(y+\operatorname{Ker}\phi)\ &\psi((x+\operatorname{Ker}\phi)(y+\operatorname{Ker}\phi))&=\psi(xy+\operatorname{Ker}\phi)\ &=\phi(xy)=\phi(x)\phi(y)\ &=\psi(x+\operatorname{Ker}\phi)\psi(y+\operatorname{Ker}\phi) \end{aligned}$$

Corollary 1 Second Isomorphism Theorem for Rings

If A is a subring of R and B is an ideal of R, then $A/(A\cap B)pprox AB/B.$

Proof Let $\phi: A o AB/B, \, a \mapsto aB$, then $\operatorname{Ker} \phi = A \cap B$.

Corollary 2 Third Isomorphism Theorem for Rings

If A and B are ideals of R and $B\subseteq A$, then (S/B)/(A/B)pprox S/A.

Proof Let $\phi:S/B
ightarrow S/A,\,sB\mapsto sA$, then $\operatorname{Ker}\phi=A/B.$

Theorem 15.4 Ideals are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R. In particular, an ideal A is the kernel of the **natural mapping** $\phi: R \to R/A, r \mapsto r + A$.

• $\mathbb{Z}[x]/\langle x \rangle \approx \mathbb{Z}$, and because \mathbb{Z} is an integral domain but not a field, the ideal $\langle x \rangle$ is prime but nor maximal in $\mathbb{Z}[x]$.

Theorem 15.5 Homomorphism from \mathbb{Z} to a Ring with Unity

Let R be a ring with unity $\ 1.$ The mapping $\phi:\mathbb{Z} o R,\,n\mapsto n\cdot 1$ is a ring homomorphism.

Corollary 1 A Ring with Unity Contains \mathbb{Z}_n or \mathbb{Z}

If R is a ring with unity and the characteristic of R is n > 0, then R contains a subring isomorphic to \mathbb{Z}_n . If the characteristic of R is 0, then R contains a subring isomorphic to \mathbb{Z} .

Corollary 2 \mathbb{Z}_m Is a Homomorphic Image of \mathbb{Z}

For any positive integer m, the mapping of $\phi : \mathbb{Z} \to \mathbb{Z}_m, x \mapsto x \mod m$ is a ring homomorphism.

Corollary 3 A Field Conatins \mathbb{Z}_p or \mathbb{Q}

If \mathbb{F} is a field of characteristic p, then \mathbb{F} contains a subfield isomorphic to \mathbb{Z}_p . If \mathbb{F} is a field of characteristic 0, then \mathbb{F} contains a subfield isomorphic to \mathbb{Q} .

Since the intersection of all subfields of a field is itself a subfield, and every field has a smallest subfield, which is called the **prime subfield** of the field. The prime subfield is isomorphic to \mathbb{Z}_p or \mathbb{Q} .

15.3 The Field of Quotients

Theorem 15.6 Field of Quotients

Let \mathbb{D} be an integral domain. Then there exists a field \mathbb{F} (called the **field of quotients** of \mathbb{D}) that contains a subring isomorphic to \mathbb{D} .

Proof Let $S = \{(a, b) \mid a, b \in \mathbb{D}, b \neq 0\}$, we define an equivalence relation on S by $(a, b) \equiv (c, d)$ if ad = bc, denote the equivalence class that contains (x, y) by x/y, and define addition and multiplication on \mathbb{F} by

a/b + c/d = (ad + bc)/(bd) and $a/b \cdot c/d = (ac)/(bd)$.

Then the mapping $\phi:\mathbb{D} o\mathbb{F},\,x\mapsto x/1$ is a ring isomorphism. \Box

- When \mathbb{F} is a field , the field of quotients of $\mathbb{F}[x]$ is traditionally denoted by $\mathbb{F}(x)$.
- Let p be a prime, then $\mathbb{Z}_p(x) = \{f(x)/g(x) \mid f(x), g(x) \in \mathbb{Z}_p[x], g(x) \neq 0\}$ is an infinite field of characteristic p.
- The field of quotients of a field $\mathbb F$ is ring-isomorphic to $\mathbb F.$
- The field of quotients of an integral domain $\mathbb D$ is the smallest field containing $\mathbb D$.

15.4 Exercises

1. Examples

1. Let
$$S = \left\{ \begin{bmatrix} a & b \\ bd & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}, d \in \mathbb{Z}$$
, then
 $\phi : \mathbb{Z}[\sqrt{d}] \to S, a + b\sqrt{d} \mapsto \begin{bmatrix} a & b \\ bd & a \end{bmatrix}$ is a ring isomorphism.

2. $\phi : \mathbb{Z}_m \to \mathbb{Z}_n, x \mapsto x \mod n$ is a ring homomorphism if and only if $n \mid m$. 3. $\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_p \oplus \mathbb{Z}_n, x \mapsto (x \mod m, x \mod n)$ where gcd(m, n) = 1. 4. $\phi: \mathbb{Z}_m o \mathbb{Z}_n, \, x \mapsto ax$ where $n \mid m$ and a is an idempotent of \mathbb{Z}_n .

5. $\phi : \mathbb{Z}[\mathbf{i}] / \langle a + b\mathbf{i} \rangle \rightarrow \mathbb{Z}[\mathbf{i}] / \langle a - b\mathbf{i} \rangle, \ z + \langle a + b\mathbf{i} \rangle \mapsto z + \langle a - b\mathbf{i} \rangle$ where a and b are nonzero real numbers.

6. Let
$$R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$$
, then $\phi: R o \mathbb{Z}, \begin{bmatrix} a & b \\ b & a \end{bmatrix} \mapsto a - b$ is a ring homomorphism.

- 2. Both $\phi: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$, $(a, b) \mapsto a$ and $\psi: \mathbb{Z}_6 \to \mathbb{Z}_6$, $x \mapsto 3x$ take a zero-divisor to the unity.
- 3. If $\phi: R o S$ is onto and $\operatorname{char} R
 eq 0$, then $\operatorname{char} S \mid \operatorname{char} R.$
- 4. Let R be a commutative ring of prime characteristic p, then the **Frobenius map** $x \mapsto x^p$ is a ring homomorphism from R to R. If R is a field, then the mapping is an isomorphism.

16 Polynomial Rings

16.1 Notation and Terminology

 ${\rm Definition}\,{\rm Ring}$ of Polynomials over R

Let R be a commutative ring. The set of formal symbols

$$R[x] = ig\{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_i \in R, n \in \mathbb{N}ig\}_{i \in I}$$

is called the ring of polynomials over R in the **indeterminate** x. Two elements $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ and $b_mx^m + b_{m-1}x^{m-1} + \cdots + b_1x + b_0$ of R[x] are considered equal if and only if $a_i = b_i$ for all nonnegative integers i. (Define $a_i = 0$ when i > n and $b_m = 0$ when i > m.)

Definition Addition and Multiplication in R[x]

- For $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, $a_n \neq 0$, the **degree** is *n*, denoted by deg f(x), and the **leading coefficient** is a_n . If a_n is the unity, then f(x) is a **monic** polynomial.
- In an integral domain, $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$, but it is possible that $\deg(f(x)g(x)) < \deg(f(x)) + \deg(g(x))$.

Theorem 16.1 $\mathbb D$ an Integral Domain Implies $\mathbb D[x]$ an Integral Domain

If $\mathbb D$ is an integral domain, then $\mathbb D[x]$ is an integral domain.

• Since $\mathbb{D}[x]$ is a ring, we only need to prove that $\mathbb{D}[x]$ is commutative with a unity and has no zero-divisors.

16.2 The Division Algorithm and Consequences

Theorem 16.2 Division Algorithm for F[x]

Let F be a field and let $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$. Then there exist unique polynomials q(x) and r(x) in $\mathbb{F}[x]$ such that f(x) = g(x)q(x) + r(x) where either r(x) = 0 or deg $r(x) < \deg g(x)$.

• Long division process, which is also true for integral domains.

- If f(x) = g(x)h(x), we write $g(x) \mid f(x)$ and call g(x) a **factor** of f(x).
- An element a is a **zero** (or a **root**) of f(x) if f(a) = 0, and we say that a is a **zero of multiplicity** k if $(x - a)^k | f(x)$ but $(x - a)^{k+1} \nmid f(x)$.

Corollary 1 Remainder Theorem

Let $\mathbb F$ be a field, $a\in \mathbb F$, and $f(x)\in \mathbb F[x]$. Then f(a) is the remainder in the division of f(x) by x-a.

Corollary 2 Factor Theorem

Let $\mathbb F$ be a field, $a\in \mathbb F$, and $f(x)\in \mathbb F[x]$. Then a is a zero of f(x) if and only if x-a is a factor of f(x).

• It's also true over any commutative ring with unity.

Theorem 16.3 Polynomials of Degree *n* Have at Most *n* Zeros

A polynomial of degree *n* over a field has at most *n* zeros, counting multiplicity.

- It's also true over integral domains.
- In the ring $\mathbb{Z}_8[x]$, x^2+7 has 1,3,5,7 as zeros. ($\mathbb{Z}_p[x]$ is a field.)
- A primitive n^{th} root of unity: $\omega = \mathrm{e}^{\mathrm{i}\pi/n}$.

Definition Principal Ideal Domain (PID)

A **principal ideal domain** is an integral domain R in which every ideal has the form $\langle a \rangle = \{ra \mid r \in R\}$ for some a in R.

Theorem 16.4 F[x] is a PID

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a principal ideal domain.

• If a field \mathbb{F} has an ideal I, then $I = \{0\}$ or \mathbb{F} .

Proof If $\exists a \in I, a \neq 0$, then $a \cdot a^{-1} = 1 \in I$, so $\forall x \in \mathbb{F}, x = x \cdot 1 \in I$.

• $\mathbb{Z}[x]$ is an iconic integral domain of polynomials, but it's not PID, because the ideal of all elements in $\mathbb{Z}[x]$ with even constant term is not generated by a single element.

Theorem 16.5 Criterion for $I = \langle g(x) \rangle$

Let \mathbb{F} be a field, I a nonzero ideal in $\mathbb{F}[x]$, and g(x) an element of $\mathbb{F}[x]$. Then $I = \langle g(x) \rangle$ if and only if g(x) is a nonzero polynomial of minimum degree in I.

• $\phi: \mathbb{R}[x] \to \mathbb{C}, \ f(x) \mapsto f(i)$, then $x^2 + 1 \in \operatorname{Ker} \phi$ and is of minimum degree. Thus, $\operatorname{Ker} \phi = \langle x^2 + 1 \rangle$ and $\mathbb{R}[x] / \langle x^2 + 1 \rangle \approx \mathbb{C}$.

16.3 Exercises

Wilson's Theorem

For every integer n > 1, $(n - 1)! \mod n = -1$ if and only if n is prime.

- $(p-2)! \mod p = 1.$
- 1. Every element in the ring of polynomial functions from \mathbb{Z}_p to \mathbb{Z}_p can be written in the form $a_{p-1}x^{p-1} + \cdots + a_0$.
- 2. $R \approx S \Leftrightarrow R[x] \approx S[x]$.

1. If $\phi: R \to S$ is a ring homomorphism, then $\overline{\phi}: R[x] \to S[x], (a_n x^n + \dots + a_0) \to \phi(a_n) x^n + \dots + \phi(a_0)$ is also a ring homomorphism.

2. $\phi: R[x] o R, \ f(x) \mapsto f(r)$ is called the **evaluation homomorphism**. 3. U(p) is cyclic.

Proof: For p > 3, otherwise U(p) has a subgroup isomorphic to $\mathbb{Z}_q \oplus \mathbb{Z}_q$ where q is a prime. But then $x^q - 1$ in $\mathbb{Z}_q[x]$ has $q^2 - 1$ zeros.

4. In
$$\mathbb{Z}_p[x]$$
, $x^{p-1}-1=(x-1)(x-2)\cdots(x-(p-1)).$

5. Relation between a ring and a polynomial ring \bigstar

- 1. I is an ideal of a ring $R \quad \Leftrightarrow \quad I[x]$ is an ideal of R[x].
- 2. I is a maximal ideal of a ring $R \Rightarrow I[x]$ is a maximal ideal of R[x].
- 3. I is a prime ideal of a ring $R \Rightarrow I[x]$ is a prime ideal of R[x].
- 6. If there is a ring homomorphism from $\mathbb Z$ onto $\mathbb F$, then $\mathbb F pprox \mathbb Z_p$.
- 7. Suppose f(x) is a polynomial with odd coefficients and even degree, then f(x) has no rational zeros.

Hint: Analog of the proof that $\sqrt{2}$ is irrational.

Confusion: 8

17 Factorization of Polynomials

17.1 Reducibility Tests

Definition Irreducible Polynomial

Let \mathbb{D} be an integral domain. A polynomial f(x) from $\mathbb{D}[x]$ that is neither the zero polynomial nor a unit in $\mathbb{D}[x]$ is said to be **irreducible** over \mathbb{D} if, whenever f(x) is expressed as a product f(x) = g(x)h(x) with g(x) and h(x) from $\mathbb{D}[x]$, then g(x) or h(x) is a unit in $\mathbb{D}[x]$. A nonzero, nonunit element of $\mathbb{D}[x]$ that is not irreducible over D is called reducible over D.

Theorem 17.1 Reducibility Test for Degrees $2 \mbox{ and } 3$

Let \mathbb{F} be a field. If $f(x) \in \mathbb{F}[x]$ and deg f(x) = 2 or 3, then f(x) is reducible over \mathbb{F} if and only if f(x) has a zero in \mathbb{F} .

• In $\mathbb{Q}[x]$, $x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)$, $x^4 + 2x^2 + 1 = (x^2 + 1)^2$, and in $\mathbb{R}[x]$, $x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$.

Definition Content of a Polynomial, Primitive Polynomial

The **content** of a nonzero polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ where the *a*'s are integers, is the greatest common divisor of $a_n, a_{n-1}, \cdots, a_0$. A **primitive polynomial** is an element of $\mathbb{Z}[x]$ with content 1.

Gauss's Lemma

The product of two primitive polynomials is primitive.

Theorem 17.2 Reducibility over $\mathbb Q$ Implies Reducibility over $\mathbb Z$

Let $f(x)\in \mathbb{Z}[x]$, if f(x) is reducible over \mathbb{Q} , then it is reducible over $\mathbb{Z}.$

- If f(x) is irreducible over \mathbb{Z} , then it's irreducible over \mathbb{Q} .
- $f(x) = 2(x^2 + 1)$ is irreducible over $\mathbb Q$ but reducible over $\mathbb Z$ since 2 is not a unit of $\mathbb Z$.

17.2 Irreducibility Tests

Theorem 17.3 Mod p Irreducibility Test

Let p be a prime and suppose that $f(x) \in \mathbb{Z}[x]$ with $\deg f(x) \ge 1$. Let $\overline{f}(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained from f(x) by reducing all the coefficients of f(x) modulo p. If $\overline{f}(x)$ is irreducible over \mathbb{Z}_p and $\deg \overline{f}(x) = \deg f(x)$, then f(x) is irreducible over \mathbb{Q} .

• To prove it: if f(x) is reducible over $\mathbb Q$, then it's reducible over $\mathbb Z_p$.

Theorem 17.4 Eisenstein's Criterion

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$. If there is a prime p such that $p \nmid a_n, p \mid a_{n-1}, \cdots, p \mid a_0$ and $p^2 \nmid a_0$, then f(x) is irreducible over \mathbb{Q} .

Corollary Irreducibility of p^{th} Cyclotomic Polynomial

For any prime p, the p^{th} cyclotomic polynomial

$${\varPhi}_p(x) = rac{x^p-1}{x-1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible over $\mathbb Q.$

Proof
$$\Phi_p(x+1) = x^{p-1} + \binom{p}{1}x^{p-2} + \binom{p}{2}x^{p-3} + \dots + \binom{p}{p-1}$$
 is irreducible over \mathbb{Q} .

Theorem 17.5 $\langle p(x) \rangle$ Is Maximal If and Only If p(x) Is Irreducible

Let \mathbb{F} be a field and let $p(x) \in \mathbb{F}[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in $\mathbb{F}[x]$ if and only if p(x) is irreducible over \mathbb{F} .

Corollary 1 $\mathbb{F}[x]/\langle p(x)
angle$ Is a Field

Let $\mathbb F$ be a field and p(x) be an irrducible polynomial over $\mathbb F$, then $\mathbb F[x]/\langle p(x)
angle$ is a field.

• This follows directly from Theorem 14.4 and 17.5.

Corollary 2 $p(x) \mid a(x)b(x)$ Implies $p(x) \mid a(x)$ or $p(x) \mid b(x)$

Let \mathbb{F} be a field and let $p(x), a(x), b(x) \in \mathbb{F}[x]$. If p(x) is irreducible over \mathbb{F} and $p(x) \mid a(x)b(x)$, then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

• To construct a field with p^n elements, find a polynomial of degree n with no zero in \mathbb{Z}_p , say $P_n(x)$, then $\mathbb{Z}_p[x]/P_n(x)$ satisfies.

17.3 Unique Factorization in $\mathbb{Z}[x]$

- The only units in $\mathbb{Z}[x]$ are ± 1 .
- The irreducible polynomials of degree 0 over $\mathbb Z$ are $f(x)=\pm p$ where p is a prime.
- Every nonconstant irreducible polynomial from $\mathbb{Z}[x]$ is primitive.

Theorem 17.6 Unique Factorization in $\mathbb{Z}[x]$

Every polynomial in $\mathbb{Z}[x]$ that is not the zero polynomial or a unit in $\mathbb{Z}[x]$ can be written in the form

 $b_1b_2\cdots b_sp_1(x)p_2(x)\cdots p_m(x),$

uniquely where the b_i 's are irreducible polynomials of degree 0 and the $p_i(x)$'s are irreducible polynomials of positive degree.

17.4 Weird Dice: An Application of Unique Factorization

1, 2, 2, 3, 3, 4

1, 3, 4, 5, 6, 8

17.5 Exercises

Rational Root Theorem

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ $(a_n \neq 0)$, if f(r/s) = 0 where r and s are relatively prime integers, then $r \mid a_0, s \mid a_n$.

Proof i.e. $a_n r^m + a_{n-1} s r^{n-1} + \cdots + a_0 s^n = 0$. This shows that $s \mid a_n r^n$ and $r \mid s^n a_0$. \Box

- 1. In $\mathbb{Z}_p[x]$, $ax^2 + bx + c = 0 \Leftrightarrow (2ax + b)^2 = b^2 4ac$, if $\sqrt{b^2 4ac}$ has at least one solution, then the quadratic formula $x = (-b \pm \sqrt{b^2 4ac}) \cdot (2a)^{-1}$ holds.
- 2. The number of reducible polynomials of degree n over \mathbb{Z}_p is $p(\mathbb{C}_p^n + p)$.

Better Solution: 8, 14.e,

17.6 Bibliography of Serge Lang

18 Divisibility in Integral Domains

18.1 Irreducibles, Primes

Definition Associates, Irreducibles, Primes

```
Elements a and b of an integral domain D are called associates if a = ub, where u is a unit of D.
```

A nonzero element a of an integral domain D is called an **irreducible** if a is not a unit and whenever a = bc, $b, c \in D$, then b or c is a unit.

A nonzero element *a* of an integral domain *D* is called a **prime** if *a* is not a unit and $a \mid bc$ implies $a \mid b$ or $a \mid c$.

- associates
 - \circ equivalence relation: $a \sim b$ if a = ub.
 - $\circ \ a = ub \quad \Leftrightarrow \quad \langle a
 angle = \langle b
 angle.$
- irreducible

- The product of an irreducible and a unit is an irreducible.
- prime
 - *a* if a prime if and only if $\langle a \rangle$ is a prime ideal.
- norm

 $\mathbb{Z}[\sqrt{d}>] = \left\{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\right\}$, where $d \neq 1$ and not divisible by the square of a prime. Define a function called the **norm**: $N : \mathbb{Z}[\sqrt{d}>] \to \mathbb{N}, a + b\sqrt{d} \mapsto |a^2 - db^2|$, then

- 1. N(x) = 0 if and only if x = 0.
- 2. N(xy) = N(x)N(y).
- 3. x is a unit if and only if N(x) = 1.
- 4. If N(x) is prime, then x is irreducible.

The converse is not true.

• If d < -1, then the only units of $\mathbb{Z}[\sqrt{d} >]$ is ± 1 .

e.g.

- In $\mathbb{Z}[\sqrt{-3}>]$, $1+\sqrt{-3}$ is an irreducible, but not a prime. (Consider $(1+\sqrt{-3})(1-\sqrt{-3})=4$, but $1+\sqrt{-3}
 mid 2$.)
- To show that $a_0 + b_0\sqrt{d}$ is irreducible, notice that every solution of $a^2 db^2 = c$ would also hold in \mathbb{Z}_n just try to find a counter-example.

Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.

Proof If a = bc, then $a \mid b$ or $a \mid c$. Let b = at = bct, then 1 = ct, thus c is a unit. \Box

Theorem 18.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, en element is an irreducible if and only if it is prime.

Proof Suppose $a \mid bc$, consider the ideal $I = \{ax + by \mid x, y \in D\} = \langle d \rangle$. Let a = dr, then d is a unit or r is a unit.

1. If d is a unit, then I = D and $1 = ax + by \Rightarrow c = acx + bcy$, and since $a \mid bc$, we have $a \mid c$.

2. If r is a unit, then $I=\langle d
angle=\langle a
angle$, and we have at=b, thus $a\mid b$. $\ \Box$

- This theorem holds in a UFD.
- $\mathbb{Z}[x]$ is not a principal ideal domain since we have the ideal $I = \langle 2, x \rangle$.

18.2 Historical Discussion of Fermat's Last Theorem

18.3 Unique Factorization Domains

Definition Unique Factorization Domain (UFD)

An integral domain D is a **unique factorization domain** if

1. every nonzero element of *D* that is not a unit can be written as a product of irreducibles of *D*; and

- 2. the factorization into irreducibles is unique up to *associates* and the order in which the factors appear.
- \mathbb{C} is not a UFD since 5 = (2 + i)(2 i) = (1 + 2i)(1 2i).

Lemma Ascending Chain Condition for a PID

In a principal ideal domain, any strictly increasing chian of ideals $I_1 \subset I_2 \subset \cdots$ must be finite in length.

Proof Let $I = I_1 \cup I_2 \cup \cdots = \langle a \rangle$, say $a \in I_n$, then $I_i \subseteq I = \langle a \rangle \subseteq I_n$, so that I_n is the last member of the chain. \Box

Theorem 18.3 PID Implies UFD

Every principal ideal domain is a unique factorization domain.

- An integral domain with the property that there is no infinite, strictly increasing chain of ideals in *D*, is called a **Noetherian domain**.
- $\mathbb{Z}[x]$ is a Noetherian domain and also a UFD, but not a PID.

Corollary $\mathbb{F}[x]$ is a UFD

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a unique factorization domain.

We can prove the Eisentein's Criterion by this corollary elegantly.

18.4 Euclidean Domains

Definition Euclidean Domain (ED)

An integral domain D is called a **Euclidean domain** if there is a function d (called the **measure**) from the nonzero elements of D to the nonnegative integers such that

1. $d(a) \leq d(ab)$ for all nonzero a, b in D; and

2. if $a, b \in D, \ b
e 0$, then there exist elements q and r in D such that a = bq + r, where r = 0 or d(r) < d(b).

- u is a unit \Leftrightarrow d(u) = d(1).
- $a = ub \Rightarrow d(a) = d(b).$
- The subdomain of an ED may not be an ED.
- Similarities Between \mathbb{Z} and $\mathbb{F}[x]$.

Properties	\mathbb{Z}	$\mathbb{F}[x]$
Euclidean Domain	d(a)= a .	$d(f(x)) = \deg f(x).$
Units	If and ony if $ a =1.$	If and only if $\deg f(x)=0.$
Division Algorithm	a = bq + r.	f(x) = g(x)q(x) + r(x).
Principal Ideal Domain	$I=\langle a angle$ where $\langle a angle$ is minimum.	$I=\langle f(x) angle$ where $\deg f(x)$ is minimum.
Prime	No nontrivial factors.	No nontrivial factors.

Properties	\mathbb{Z}	$\mathbb{F}[x]$
Unique Factorization Domain	Every element is a unique product of primes.	Every element is a unique product of irreducibles.

- $\mathbb{Z}[i] = \{a+b\mathrm{i} \mid a,b\in\mathbb{Z}\}$ is a Euclidean domain with $d(a+b\mathrm{i}) = a^2+b^2$.
 - 1. $d(x) \leq d(xy)$ follows directly from d(xy) = d(x)d(y).
 - 2. Say $xy^{-1} = s + t ext{i}, \, s,t \in \mathbb{Q}$, let m be the integer nearest s, and n be the integer nearest t, then

$$egin{aligned} &xy^{-1} = (m+n\mathrm{i}) + [(s-m)+(t-n)\mathrm{i}], \ &x = (m+n\mathrm{i})y+r, \, r = [(s-m)+(t-n)\mathrm{i}]y, \end{aligned}$$

$$d(r) \leq ig(rac{1}{4} + rac{1}{4}ig) d(y) < d(y).$$

- $\circ \ \mathbb{Z}[\mathrm{i}]/I$ is finite.
- $\mathbb{Z}[\sqrt{d}]$ is Euclidean domain when $d=\pm 2,\pm 1$, and there are no other negative values that satisfy.

Theorem 18.4 ED Implies PID

Every Euclidean domain is a principal ideal domain.

Proof The zero ideal is $\langle a \rangle$. For a nonzero ideal I, let $a \in I$ be such that d(a) is a minimum, then $I = \langle a \rangle$. For, $\forall b \in I$, b = aq + r, but $r = b - aq \in I$, so $d(r) \ge d(a)$, thus r = 0 and $b \in \langle a \rangle$.

• There are PID that are not ED.

Corollary ED Implies UFD

Every Euclidean domain is a unique factorization domain.

 $ED \Rightarrow PID \Rightarrow UFD,$ $UFD \Rightarrow PID \Rightarrow ED.$

Theorem 18.5 D a UFD Implies D[x] a UFD

If D is a unique factorization domain, then D[x] is a unique factorization domain.

- \mathbb{Z} is a PID, but $\mathbb{Z}[x]$ is not a PID.
- $\mathbb{Z}[\sqrt{-5}]$ is an integral domain but not a UFD, since $46 = 2 \cdot 23 = (1 + 3\sqrt{-5})(1 - 3\sqrt{-5})$.

18.5 Exercises

- 1. Suppose a and b belong to an integral domain and b
 eq 0, then
 - $\langle ab
 angle$ is a proper subset of $\langle b
 angle \quad \Leftrightarrow \quad a \,$ is not a unit.
- 2. Every proper ideal of a PID is contained in its maximal ideal.
- 3. In \mathbb{Z}_n where n need not to be a prime,

1. $p \mid n \iff p$ is prime in \mathbb{Z}_n . 2. $p^2 \mid n \iff p$ is irreducible in \mathbb{Z}_n and $p \mid n$. 4. Descentding chain condition

An integral domain with the property that every strictly decreasing chain of ideals $I_1 \supset I_2 \supset \cdots$ must be finite in length is a field.

5. An ideal A of a commutative ring R with unity is said to be **finitely generated** if there exist elemts a_1, a_2, \dots, a_n of A such that $A = \langle a_1, a_2, \dots, a_n \rangle$.

An integral domain R satisfies the ascending chain condition. \Leftrightarrow Every ideal of R is finitely generated.

- 6. For every field $\mathbb F$, there are infinitely many irreducibles in $\mathbb F[x]$.
- 7. Let I be a non-zero ideal in a PID R, then R/I has a fiinte number of ideals.

Question:

30, ⇒.

18.6 Bibliography of Sophie Germain

18.7 Bibliography of Andrew Wiles

18.8 Bibliography of Pierre de Fermat